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Summary

Segmentation of intact cell nuclei from three-dimensional
(3D) images of thick tissue sections is an important basic
capability necessary for many biological research studies.
However, segmentation is often difficult because of the tight
clustering of nuclei in many specimen types. We present a
3D segmentation approach that combines the recognition
capabilities of the human visual system with the efficiency
of automatic image analysis algorithms. The approach first
uses automatic algorithms to separate the 3D image into
regions of fluorescence-stained nuclei and unstained back-
ground. This includes a novel step, based on the Hough
transform and an automatic focusing algorithm to estimate
the size of nuclei. Then, using an interactive display, each
nuclear region is shown to the analyst, who classifies it as
either an individual nucleus, a cluster of multiple nuclei,
partial nucleus or debris. Next, automatic image analysis
based on morphological reconstruction and the watershed
algorithm divides clusters into smaller objects, which are
reclassified by the analyst. Once no more clusters remain,
the analyst indicates which partial nuclei should be joined
to form complete nuclei. The approach was assessed by
calculating the fraction of correctly segmented nuclei for a
variety of tissue types: Caenorhabditis elegans embryos (839
correct out of a total of 848), normal human skin (343/
362), benign human breast tissue (492/525), a human
breast cancer cell line grown as a xenograft in mice (425/
479) and invasive human breast carcinoma (260/335).
Furthermore, due to the analyst’s involvement in the
segmentation process, it is always known which nuclei in
a population are correctly segmented and which not,
assuming that the analyst’s visual judgement is correct.

1. Introduction

Cytology shows that cells in a tissue become increasingly
heterogeneous in their structural properties during carci-
nogenesis, while histology shows increasing disorganization
of the cells. In order to understand the underlying
molecular mechanisms of these structural alterations, it is
necessary to analyse the cells individually and within their
natural tissue context. Since many of the structural and
molecular changes occur within the cell’s nucleus, the
particular ability to segment intact individual nuclei from
within tissue (>20 mm) sections is an important technical
capability. This requires fluorescent DNA staining to retain
tissue transparency, three-dimensional (3D) confocal micro-
scopy image acquisition (Wilson, 1990) and 3D image
analysis.

Segmentation of nuclei can be achieved by interactive or
automatic algorithms. Interactive methods, based on
drawing around nuclei in sequential (Rigaut et al., 1991;
Czader et al., 1996) or orthogonal (Lockett et al., 1998) 2D
slices are superior in performance (defined as the fraction of
nuclei correctly segmented based on visual judgement)
compared to automatic algorithms. However, they are slow,
typically taking minutes per nucleus, and are thus limited
in their practical application to situations where only tens
of nuclei require analysis. Rodenacker et al. (1997)
presented a less interactive method, which was based on
thesholding followed by 3D volume visualization and
interactive division of clusters of nuclei. Division was
performed by manual marking of the centres of nuclei,
followed by automatic growing from the markers limited by
size and shape constrains, and final manual refinement by
fitting the nuclei to ellipsoidal model. However, interaction
is still considerable for densely packed nuclei and the shape
constraints imposed could produce undesirable results on
samples with highly irregular nuclear shape, such as those
that occur in cancer tissue.
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Automatic algorithms on the other hand are much faster,
enabling convenient analysis of hundreds to thousands of
nuclei per study, but they do not correctly segment all of the
nuclei. For example, Rigaut et al. (1991) developed a
segmentation method composed of grey level opening, top
hat transformation, geodesic reconstruction, particle deag-
glomeration by the watershed algorithm, and final dis-
crimination by adaptive thresholding to segment 3D tissue
samples of normal rat liver and in situ carcinoma of the
oesophagus. The algorithm performed well for the separated
nuclei characteristic of liver samples, but performance
deteriorated for cancerous tissue where nuclei were
clustered, which led them to use an interactive method.
Ancin et al. (1996) presented a segmentation that first
performed thresholding, followed by refinement of the
results using a split and merge algorithm and then a
watershed to divide clusters of nuclei. The authors reported
92% correct segmentation on rat liver, but did not report
results for the hippocampal brain region of the rat, where
nuclei are more densely packed. Irinopoulou et al. (1997)
presented a 3D segmentation method that used global
thresholding followed by morphological filtering and
segregation by watershed algorithm to segment each 2D
slice of the 3D image. Then, nuclei deagglomeration in the Z
(depth) direction was performed based on the convexity
criterion of the object contours. It was tested on four
different types of prostatic lesion: hyperplasia, prostatic
intraepithelial neoplastia, well-differentiated and poorly
differentiated carcinoma. Since the study focused on the
measurement of DNA volume, quantitative results about the
number of correctly segmented nuclei were not given. In
summary, the performance of the automatic methods is
high only (>90%) for specimens containing well-separated
nuclei. Performance significantly deteriorates for many
cancer specimens because the cells are structurally domi-
nated by their nuclei, leaving little separating cytoplasm,
and thus the images show clustered nuclei, and because
nuclei are more variable in their sizes and shapes.

Here we report a 3D segmentation approach designed to
deal with the problem of clustered nuclei in cancer
specimens. It combines the recognition capabilities of the
human visual system with the efficiency of computational
image analysis algorithms, thus achieving the correct
segmentation of a high proportion of individual nuclei in
a variety of intact tissue specimens.

2. Materials and methods

2.1. Sample preparation and image acquisition

Caenorhabditis elegans embryos (CE) were obtained from 10–
20 adult worms gravid with embryos. An incision was made
at the vulva to release the embryos, which were then fixed
using paraformaldehyde, following the protocol explained in

Chuang et al. (1994). After fixation, the embryos were
treated with RNase and stained by incubation with the DNA
dye propidium iodide (PI) (2 mg mL–1) for 1 h to label the
nuclei. Then the embryos were washed and mounted in
either (25% glycerol, 25 mg mL–1 DABCO, 10 mm Tris pH
8·5) or (35% glycerol, 20 mg mL–1 n-propyl gallate, 30 mm
Tris pH 9·5) under a glass cover slip No. 1. The embryos
were 30 mm thick and contained 50–300 cells.

Normal human skin specimens (NS) were obtained from
the archives of the Dermatopathology Section of the
Departments of Pathology and Dermatology, University of
California, San Francisco.

Human breast specimens, which contained benign parts
(BP) and invasive carcinoma parts (IC) were obtained from
the Department of Pathology, California Pacific Medical
Center (CPMC), San Francisco.

The skin and breast specimens had been fixed in 10%
neutral buffered formalin and paraffin-embedded before
receipt. They were cut into 20 mm sections and stained with
PI at 0·1 mg mL–1 and mounted in glycerol. In addition, the
centromeric regions of chromosome 1 were also labelled
using fluorescence in situ hybridization (FISH) (Thompson
et al., 1994), although the analysis of these signals is
outside the scope of this paper. However, the FISH protocol
did cause some degradation of the nuclei.

Formalin-fixed, paraffin-embedded MCF7 cells (a human
breast cancer cell line, BC) that had been grown in nude
mice as a xenograft were provided by Dr Gail Colbern
(Geraldine Brush Cancer Research Institute, CPMC). They
were cut to 30 mm thickness, FISH was performed using
probes for chromosome 1 centromeric region and the
20q13.2 locus and they were counterstained with 100 mL of
1 mm YO-PRO-1 (Molecular Probes, Eugene, OR, U.S.A.)
containing 1 mg mL–1 RNase A in phosphate buffer and
incubated in the dark at 37 8C for 2 h. Afterwards the
sections were washed twice in phosphate-buffered saline at
room temperature for 5 min and rinsed in distilled water.
After air drying, the sections were mounted in glycerol,
covered with a coverglass, and sealed with nail polish.

Specimens CE, BP, IC and BC were imaged using a laser
scanning confocal microscope 410 (Carl Zeiss Inc., Thorn-
wood, NY, U.S.A.) equipped with an Axiovert 100 micro-
scope (Zeiss), a 63×, 1.4 NA plan-Apochromat objective lens
(Zeiss) and an Argon/Krypton (Ar/Kr) laser. NS was imaged
with an MRC-1000 confocal imaging system (Bio-Rad
Microscience Ltd, Hemel Hempstead, U.K.) equipped with
a Diaphot 200 microscope (Nikon Inc., Instrument Group,
Garden City, NY, U.S.A.), a 60×, 1.4 NA PlanApo objective
lens (Nikon) and an Ar/Kr laser.

The PI in specimens CE, NS, BP and IC was imaged using
the 568 nm laser line and collecting emissions longer than
590 nm. The YO-PRO-1 in BC was exited using the 488 nm
laser and emissions were detected using a band-pass filter in
the range 515–565 nm.
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Fig. 1. Five lateral slices from 3D images of DNA-stained specimens. (a) C. elegans embryo, (b) normal skin, (c) benign breast tumour, (d)
breast cancer cells grown in mice, (e) invasive carcinoma.
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The distance between adjacent 2D slices was 0·3 mm for
CE and BC and 0·5 mm for the others. The voxel size was 0·1
in the x and y dimensions for CE, 0·2 mm for BP, IC and BC,
and 0·18 mm for NS.

The acquired images were stored in the ICS image format
(Dean et al., 1990) and transferred to a UNIX workstation
for archiving and analysis.

Figure 1 shows lateral slices from each of the specimen
types to illustrate the differences in tissue organization,
cellular homogeneity and nuclear size and shape.

2.2. Segmentation algorithm

2.2.1. Outline of the algorithm. The main steps of the
segmentation are summarized in Fig. 2. The input image is
a 3D confocal microscope image of the fluorescent DNA
staining of the specimen. The image is composed of a stack
of 2D images acquired at equidistant planes through the
specimens. First, the 3D image is automatically segmented
into regions corresponding to nuclear (positive staining)
and non-nuclear, background regions (no staining). Next

for each nuclear region (object) its size and shape is
measured and then it is classified by visual inspection.
Those objects classified as being clusters of multiple nuclei
are split into smaller objects using an automatic cluster
segmentation algorithm and are returned for measurement
and reclassification.

2.2.2. Software environment. The algorithms were pro-
grammed in ANSI C language and compiled into SCIL_
Image vs. 1.3 (TNO Institute of Applied Physics and
University of Amsterdam, The Netherlands) under UNIX
operating system (Solaris vs. 2.6 and IRIX vs. 5.3).
SCIL_Image provided basic algorithms for point operations,
linear filtering, morphological operations, etc. All the
algorithms were anisotropic in that they accounted for the
difference in the physical size of a voxel in the axial direction
versus the size in the lateral direction. This avoided
increased computation that would be associated with
working with interpolated images with equal voxel density
in the axial and lateral directions. The eigenanalysis for
some of the object measurements (see below) was done
using the Linear Algebra Package (LAPACK) vs. 2.0
(Anderson et al., 1994). The 3D visualization and user
interface software was written in Cþþ , using the
Motif widget toolkit, a widget scripting language developed
in-house for the user interface and the OpenGL library
(Sun Microsystems, Mountain View, CA, U.S.A.) for the 3D
rendering. For visualization purposes, the images were
interpolated with third-order polynomials to make them
isotropic.

We developed a linked-list style structure for databasing
the acquired images along with the intermediate and final
results of the segmentation process. The structure enabled
increased efficiency in the visualization and cluster division
steps in part by restricting analysis to only the relevant
parts of the image, and by enabling the segmentation
process to be interrupted at any stage.

2.2.3. Automatic segmentation. Each of the image analysis
steps for automatically separating the acquired image into
nuclear objects and non-nuclear background is described
below.

Median filtering. Median filtering with a 3 þ 3 þ 3 kernel
was applied to the original image to remove shot noise,
which is introduced by the photomultiplier tubes of confocal
microscopes.

Estimation of the average radius of isotropic nuclei. An
estimate of the average radius of the nuclei was needed for
subsequent steps in the analysis. It was calculated directly
from the median filtered 3D image using an iterative
procedure (described in detail below) where each iteration
was a combination of two steps. The first step used a Hough
transform-based method to shrink nuclei (Ballard, 1981)
and the second method used an automatic focusing
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Fig. 2. Outline of the segmentation procedure. First the 3D confocal
image is automatically segmented into objects corresponding to
contiguous regions of fluorescent DNA staining. The size and
shape of these objects are measured and then the objects are clas-
sified by the user as being individual nuclei, debris or clusters of
nuclei. Objects classified as clusters are divided into smaller objects
that are returned for reclassification.

SEGMENTATION OF CONFOCAL IMAGES 215



Fig. 3. Example of the transform used to shrink nuclei and the focus function during radius estimation: (a) part of an xy slice from a 3D image
of breast cancer cells grown in culture mice. (b) Image of the gradient (magnitude) calculated from image (a). (c), (d), and (e) Examples of
transformed images with R ¼ 12, 24, 48. R ¼ 24 corresponds to the maximal shrinkage for the image. (f) Graphic of the degree of focus as a
function of R showing a peak at R ¼ 24.
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algorithm to measure the average amount of shrinkage of
the nuclei present in the image. The iterative procedure
searched for the maximal level of shrinkage, from which the
average radius of the nuclei could be estimated. These two
steps are explained in detail below and graphically shown in
Fig. 3.

Shrinking was done as follows when the image was
assumed to have isotropically sized voxels and the spatial
resolution was also isotropic. First the magnitude and
direction of the gradient of intensity at every voxel of the
image I was calculated using the 1st order Gaussian
derivative filter applied in the x, y and z directions. The
spatial representation of these directional filters is

gs ¼ ¹
s

j3
������
2p

p e¹ s2

2j2 ð1Þ

where s ¼ x, y or z.
The magnitude of the output is

G ¼

�����������������X
s¼x;y;z

G2
s

s
ð2Þ

being Gs ¼ gs * I, the convolution (*) between the derivative
filter and the image I. G is high at significant intensity
transitions, i.e. at nuclear surfaces, and low in the
background and interior of nuclei. Then, starting with an
initially empty new image and a guess of the radius (R) of
the nuclei, for each voxel, the magnitude of the gradient is
added to the intensity of the voxel in the new image at a
distance R from the voxel in the original image in the
direction of the gradient.

Modification to the radius estimation for anisotropically sized
voxels and anisotropic spatial resolution. In our images, voxels
were anisotropic in size and the spatial resolution was
anisotropic (the latter is a property of the microscope).
Thus, the direction of the gradient and the gradient
magnitude determined from the output of the 1st order
Gaussian derivative filter could not be used directly. The
gradient direction was corrected for voxel size anisotropy by
dividing the gradient components in the lateral (x and y)
directions, Gs (s ¼ x or y) by r2, where r is the voxel size in
the lateral directions relative to the axial (z) direction. Also
the guess of the nuclear radius R required adjustment,
because of the anisotropic voxel size. The adjusted value
was:

R

������������������������������
2r4 þ G2

x þ G2
y

2r2 þ G2
x þ G2

y

s
ð3Þ

The gradient magnitude required correction because of
the anisotropic point spread function (PSF) of the micro-
scope. (Consider the fact that a nuclear surface whose
normal is in the lateral (xy) plane will produce a greater
gradient magnitude than the same surface whose normal is
parallel to the z direction.) The correction was implemented

by compensating for the anisotropic PSF during the
Gaussian filtering by adjusting the value j in Eq. (1) for gx

and gy, but not gz,

ðAdjustment value of jÞ ¼
jz

jx;y
·

1
r

·j ð4Þ

where jx,y and jz are the standard deviations of Gaussian
approximating the PSF of the microscope. In addition, G
requires correction for the anisotropic voxel size, which was
done by including a division by r in Eq. (4).

This adjustment was confirmed by convolving an image
with spheres with the anisotropic PSF of the microscope.
The PSF was modelled by a Gaussian filter of standard
deviation 0·5 voxels in the lateral directions (jx,y) and 1·25
voxels in the axial direction (jz). After convolution of the
sphere image with the Gaussian, the image was interpolated
in the axial direction to simulate anisotropy in voxel size.
Then the shrinking with the above anisotropy corrections
was applied to the image. The result was an isotropic
response in the transformed image.

The average amount of shrinkage achieved by R was
determined by measuring the degree of ‘focus’ of the
transformed image. The sum of the gradient (calculated by
the Sobel operator) magnitude squared at every voxel in the
transformed image was taken as the measure of focus (Yeo
et al., 1993). A binary iterative search was undertaken to
locate the value of R, ROPT which produced the maximal
degree of focus and thus the maximal degree of shrinkage.
ROPT then equalled the average radius of the nuclei. If ROPT

was already known from the previous analysis of similar
specimens, it could be entered as an input parameter to the
overall segmentation procedure and this step would be
omitted.

Experimental tests on images of actual nuclei confirmed
that this radius estimation procedure worked because the
automatically estimated radius of the nuclei approximately
equated the radii interactively measured from the images.

Threshold-based segmentation. Intensity thresholding was
considered appropriate for segmenting the nuclear regions
because of the high voxel intensities in nuclei labelled with
fluorescent DNA stain versus the low intensity of the
background. However, the intensity of nuclear regions was
not constant across the image, especially in the axial
direction because of increasing photobleaching and increas-
ing spherical aberration caused by the refractive index of the
specimen being less than oil. This prevented a single –
global – threshold being applied for the whole image.
Therefore, an adaptive thresholding algorithm was used
(Lockett et al., 1991). Adaptation was achieved by dividing
the images into smaller – cuboidal – regions, and calculat-
ing a single threshold for each volume. The size of each
volume (in voxels) was (3ROPT * 3ROPT * 1) in the (x, y, z)
directions. This size was large enough in the lateral
directions to ensure that each cuboidal volume usually
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contained nuclei and background, which is necessary for
the correct threshold to be calculated, yet small enough in
the z direction to account for changing nuclear intensity.

The gradient weighted threshold (MacAulay & Palcic,
1988) for each volume at the ath volume in the x direction,
the bth volume in the y direction and at the slice z, Ta,b,z was
calculated using the formula:

Ta;b;z ¼

X3ðaþ1ÞROPT

x¼3aROPT

X3ðbþ1ÞROPT

x¼3bROPT

Ix;y;z·Gx;y;z

X3ðaþ1ÞROPT

x¼3aROPT

X3ðbþ1ÞROPT

x¼3bROPT

Gx;y;z

ð5Þ

where (x, y, z) is the voxel coordinate in the image, I is the
voxel intensity from the median-filtered image and G is the
gradient magnitude calculated from the median-filtered
image using the Sobel operator (Castleman, 1979a).

Occasionally, volumes contained only background and no
nuclei. For these volumes, the calculated threshold was
approximately equal to the mean intensity in the volume,
and thus some of the voxels were incorrectly classified as
object. In order to avoid this error, the mean intensity, mean
weighted intensity (numerator in Eq. (5)), and mean
gradient (denominator in Eq. (5)) of each volume were
compared to the average of these means over all the
volumes of the image. If for a given volume, all three values
were lower than the averages, a condition unique to
background-only volumes, the threshold value for the
volume was recalculated as being the average threshold of
the neighbouring volumes where this condition was not met.

In order to obtain gradually changing threshold across
each lateral slice image, the values Ta,b,z were assumed to be
true only at the centre voxel of their respective volume and
bilinear interpolation was used to calculate a threshold at
all the other voxels. Actual thresholding was accomplished
by setting all voxels with intensities above their threshold
intensity to 1 (object regions) and all others to 0 (back-
ground regions). Background regions inside nuclei with
volumes much less than nuclei, presumably corresponding
to nucleoli, were converted to object regions by setting their
intensities to 1.

Morphological segmentation. The binary image obtained
above was morphologically filtered to eliminate small
objects (debris) and to divide slightly touching clusters of
nuclei. First, binary erosion was applied using an ellipsoidal
kernel a third of the average size of the nuclei in each
dimension. This size guaranteed substantial erosion without
loss of the nuclei, but with loss of small debris. Next, the
skeleton of the eroded binary image was calculated to find
bisecting surfaces between slightly touching nuclei, using
the method of Verwer et al. (1993). These surfaces were
superimposed on the original binary image to split slightly
touching nuclei. The result is a set of binary, unclassified

objects that represent single nuclei, clusters of nuclei or
large pieces of debris.

2.2.4. Object measurement

The following parameters were measured for each of the
binary objects:

Volume, equal to the total number of voxels inside the
object.

Surface area, which was measured accurately using
Mullikin & Verbeek’s (1993) method based on Chamfer
metrics.

Shape factor. This parameter indicates how spherical the
object is.

Shape factor ¼
ðSurface areaÞ

3
2

Volume
ð6Þ

Centre of mass. This provided a central reference point for
each object. The coordinates of the centre of mass areX

i⊂ Object

xi

Volume
;

X
i⊂ Object

yi

Volume
;

X
i⊂ Object

zi

Volume

0@ 1A ð7Þ

where xi,yi,zi are the image coordinates of voxel i.
The Eccentricity measures the combined elongation and

flattening of the object relative to a sphere. We used the
following functional definition of eccentricity:

Eccentricity ¼
2

�����
LP

p�����
LS

p
þ

�����
LT

p ð8Þ

where LP, LS, and LT (LP $ LS $ LT) are the eigenvalues
calculated from eigenanalysis on the matrix of second-order
central moments of the binary object (Lo & Don, 1989). The
eccentricity of a sphere is 1. Objects with LP ¼ LS have
eccentricity values ranging from 1 to 2 (LT ¼ 0 represents a
perfectly flat disc). Objects with LS ¼ LT have eccentricities
between 1 and ∞ (LS ¼ LT ¼ 0 represents a straight line)

2.2.5. Visual classification.

After segmentation and measurement, the objects were
rendered using our software program called DAta Visualiza-
tion aNd Computer Interaction (daVinci). The user interface
to daVinci is shown in Fig. 4.

daVinci interpolates objects to make them spatially
isotropic and displays them to the user. Each ‘unclassified’
object in turn is displayed and the user can classify it as
‘nucleus’, ‘nucleus on the edge’ of the image, ‘cluster of
nuclei’, ‘cluster on the edge’ or ‘debris’. To help the user,
several rendering options are available: objects can be freely
rotated by mouse interaction in the OpenGL window (top
left part of Fig. 4); automatic (Fit to Window in the Rendering
Options window in the top right of Fig. 3) and manual
(Scale) zooming of the object; the opacity of the surface of
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the segmented object (Opacity) can be adjusted, and the
option to simultaneously display the surface rendered object
with any intersecting xy, xz or yz slice from the original
acquired image is available. This is important for estimating
the accuracy of rendering in comparison to the original
data. In addition, the objects surrounding the current object
can be displayed (Show neighbours). This is useful for
reclassifying objects after cluster division (section 2.1.6)
when individual nuclei might have been erroneously
divided into several objects. One of the options under the
Cell menu allows objects to be rejoined.

The user makes the classification decision based on
visual examination of the shape of the surface-rendered
object in combination with the intersecting slices and
using the measurements of the object (Info window in
the bottom left corner). Then the user informs the
program of the decision by clicking a button in the
Classify window in the bottom right of Fig. 4. The
program provides an Undo option under the Edit menu
so that the user can correct their errors. Further informa-
tion about the interface options is given in the caption of
Fig. 4.

q 1999 The Royal Microscopical Society, Journal of Microscopy, 193, 212–226

Fig. 4. The user interface of DAta VIsualization aNd Computer Interaction (daVinci). Top left window: Menus and 3D visualization panel: the
panel shows a surface-rendered binary object which can be arbitrarily rotated by mouse interaction. The object is intersected with the 20th
xy slice from the acquired image. The menus contain the following options: (a) File: General options for file management and control of the
application. (b) Edit: Options for selection and handling of individual objects. (c) Cell opens the following windows: Rendering Options panel,
Classify and Info. (d) Class allows selective visualization of objects that belong to a given class. (e) Help provides instructions about the opera-
tion of the program.
The top right window (Rendering Options) provides controls for rendering the objects and simultaneous visualization of the original grey
values. The bottom left window shows measurements of the current object. The bottom right window allows the user to classify the current
object.
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2.2.6. Cluster division

After visual classification, clusters of nuclei were divided
into individual nuclei using a two-step algorithm. Figure 5
is a flow diagram of the cluster division. In the first step, the
algorithm attempted to find an internal marker for each
nucleus in the cluster. Then, in the second step the

algorithm attempted to find a surface between nuclei in
the cluster. After division, the resulting objects were
classified by the user (Section 2.1.5) as an individual
nucleus, a cluster of nuclei (in which case cluster division
would be repeated) or a partial nucleus (in which case it
would be later rejoined to its counterpart). This cycle was
repeated until no clusters remained.

The method to calculate nuclear markers was a 3D
extension of the method of Malpica et al. (1997). First, the
distance transform (DT) of the object (see Fig. 5) was
determined using a modified vector distance transform
(Mullikin, 1992) to avoid both the expensive computational
load of the Euclidean distance transform (Castleman,
1979b) and the errors associated with the use of the city-
block distance transform (Borgefors, 1986).

We use the peaks of the DT image to indicate the centres
of nuclei. However, this image contained many small, noise
peaks that arose from the rough surface of the cluster. These
noise peaks would ultimately lead to the cluster dividing
into a large number of small objects rather than a few
nuclei. Thus they were removed by Gaussian filtering of the
DT image. The standard deviation of the filter was one third
of ROPT. At this stage, a new estimate of the radius of the
nuclei inside the cluster could be calculated as the
maximum of the filtered DT. When only one peak was
found, the above process was repeated, with a standard
deviation of the Gaussian filter half the previous value.

Surfaces between peaks were found using the watershed
algorithm (Beucher & Meyer, 1992) where the peaks were
used as the initiation points for ‘flooding’ either the inverse
of the acquired image after median filtering or the DT image
before filtering. The rationale for using the inverse of the
original image after median filtering was that voxels at the
surfaces of nuclei should have low intensity (high intensity
in the inverse image) because the DNA stain should be
absent at these points. However, that is not necessarily true
if the nuclei are closely clustered, with little or no cytoplasm
in between. In those cases, the morphological information
encoded in the DT image was used, since it shows bright
peaks at the centres of the nuclei and ‘dark’ necks between
objects. We used the inverse of the original image, and used
the DT only if the cluster did not divide.

2.3. Evaluation of the segmentation procedure

2.3.1. Evaluation using computer-generated objects. Evalua-
tion of the algorithm using computer-generated objects was
carried out to establish the accuracy of the segmentation
and its robustness against noise.

Six objects were generated, following a procedure
described in Lockett et al. (1998): two spheres of radius
10 and 25 voxels, two curved disks obtained intersecting
shifted versions of the spheres, a normal ellipsoid and a

Fig. 5. Cluster division: (1) calculation of the distance transform
(DT) of the binary mask of the cluster; (2) Gaussian filtering to
remove noise peaks from the DT image; (3) extraction of marker
peaks that are the centre of nuclei; (4) watershed algorithm to
find surfaces between nuclei using the inverse of either the
acquired image after median filtering or of the DT image. The
choice using the DT image or grey image for determination of
dividing surfaces in the watershed algorithm (Or in the flow ele-
ment in the chart) is done by the user, based on an initial visual
analysis of the images or on the results obtained using one of the
methods in the previous cluster segmentation cycles.
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curved ellipsoid. The simulated voxel size was 0·2 mm. We
blurred the objects using a Gaussian filter with a standard
deviation (jx,y ¼ 0·1 mm, jz ¼ 0·25 mm). The filter roughly
approximated the blurring effect of the PSF of the confocal
microscope. Next we subsampled the objects by a factor of
two in the axial direction, to simulate a voxel size of 0·2 mm
in the lateral direction and 0·4 mm in the z direction. Then
we added Gaussian noise such that the signal-to-noise ratio
(SNR) equaled 3·5, which was the same as the SNR of the
tissue images. The objects were then segmented and the
accuracy of the segmentation was determined by calculat-
ing the average distance between the surface of the objects
and the surface given by the segmentation.

Next, we determined the limits of our cluster segmenta-
tion algorithm by calculating the minimum distance
between clustered objects required for the algorithm to
divide it. We prepared two computer-generated clusters
consisting on two ‘nuclei’ each. One was composed of two
truncated spheres facing each other at their flat side and the
other was the big sphere and the biggest spherical disk.
These two clusters represented models of cases that can be
found in real specimens. The first, composed of two
truncated spheres (Fig. 1a,b), could be envisioned as two
nuclei flattened in their contact surface, with cytoplasm in
between. The second (Fig. 1c,d) is an extreme situation
representing a cluster of two nuclei where one is wrapped
around the other. The increasing size of the gap between the
surfaces in each cluster represented either different degrees
of clustering or different amounts of unstained cytoplasm
between the nuclei. The interface surface between the
objects was first ‘parallel’ to the xy plane and then to the yz
plane and the spacing between the two parts of each cluster
ranged from 0 to 10 voxels. Since the voxel size was 0·2 mm,
the distance between objects ranged from 0·2 to 2 mm.
Figure 6 shows some clusters.

The clusters were subsampled and anisotropic Gaussian
filtered as described above, but in this case we added three
different amounts of Gaussian noise, which corresponded to
no noise (SNR ¼ ∞), SNR ¼ 3·5 and 2. The goal of this
experiment was to find the minimum distance necessary for
correct segmentation of the cluster.

2.3.2. Evaluation using tissue specimens. Five types of thick
tissue specimen were used that were considered to range

from easy: C. elegans embryos which had nuclei that were
spherical in shape and well separated, to difficult: invasive
carcinoma of the human breast, where nuclei were highly
irregular in shape and size and highly clustered. Inter-
mediate specimens were normal human skin, a human
benign breast tumour, and a human breast cell line grown
as a xenograft in a mouse.

Several hundred nuclei from each specimen type were
imaged and performance was measured as the fraction of
nuclei correctly segmented, based on visual judgement.

3. Results

3.1. Results of the experiments with computer-generated
objects

The results of the study using computer-generated objects to
assess the performance of the segmentation procedure are
in Tables 1–3.

Table 1 shows that the average distance between the
actual and segmented surfaces of the isolated objects was
always less than 1 voxel (0·2 mm), suggesting that nuclei
were accurately segmented by the procedure. In all cases
the average distance was at or below the limiting spatial
resolution.

Table 2 shows the minimum distance between the two
clustered objects that allows segmentation at various noise

Fig. 6. Examples of the computer-generated objects that were used to assess the segmentation procedure. The rendered objects are non-inter-
polated and thus show the anisotropic voxel size. The lateral slices beneath the surface rendering show the central slice from the 3D images,
and include the Gaussian blurring and noise, SNR ¼ 3·5. (a) Two truncated spheres, two voxels (0·4 mm) apart, with contact surface parallel
to the yz plane; (b) two truncated spheres, two voxels (0·4 mm) apart, with contact surface parallel to the xy plane; (c) central xz slice through
(a); (d) central xz slice through (b); (e) curved disk and sphere, six voxels (1·2 mm) apart, with contact surface ‘parallel’ to the yz; (f) curved
disk and sphere, six voxels (1·2 mm) apart, with contact surface ‘parallel’ to the xy; (g) central xz slice through (e); (h) central xz slice through
(f).

Table 1. Evaluation of the segmentation procedure on computer
generated objects. The table shows for each object the average dis-
tance in mm between the original surface and the surface obtained
by segmentation.

Average distance (mm)
between true and

Object segmented surfaces

Sphere (Radius ¼ 10) 0·18
Sphere (Radius ¼ 25) 0·15
Curved disk (Radius ¼ 10) 0·10
Curved disk (Radius ¼ 25) 0·17
Curved ellipsoid 0·18
Test ellipsoid 0·13
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Table 2. Evaluation of the segmentation procedure using two clusters of two objects. The
minimum distance (mm) necessary for the algorithm to correctly divide the cluster into its
objects, for different values of SNR, is shown.

SNR

Cluster ∞ 3·5 2

Two truncated spheres (orientated as in Fig. 1a) 0 0 0
Two truncated spheres (orientated as Fig. 1b) 0 0 0
Sphere þ Disk (orientated as Fig. 1e) 0·4 0·6 0·8
Sphere þ Disk (orientated as Fig. 1f) 0·8 1·4 1·6

Table 3. Evaluation of the segmentation accuracy at the surfaces between the computer-
generated objects of clusters. The average distance (in mm) between the segmented and
actual surfaces of the objects is shown.

Average distance (mm)
between true and

Cluster segmented surfaces

Two truncated spheres (orientated as in Fig. 1a) First half: 0·15
Distance between objects: 0 mm Second half: 0·14
Two truncated spheres (orientated as in Fig. 1b) First half: 0·11
Distance between objects: 0 mm Second half: 0·17
Sphere þ Disk (orientated as in Fig. 1e) Sphere: 0·24
Distance between objects: 0·6 mm Disk: 0·16
Sphere þ Disk (orientated as in Fig. 1f) Sphere: 0·23
Distance between objects: 1·4 mm Disk: 0·32

Table 4. Performance of the segmentation procedure for the tissue specimens. It shows, for each specimen type, the number of nuclei that
were segmented correctly based on visual judgement (Correct nuclei); number of nuclei in clusters that could not be divided (Nuclei in clus-
ters); number of objects that the user could not identify (Undefined) and number of lost nuclei (Lost), due to poor DNA staining. Percentages
shown in paretheses.

Nuclei remaining
Specimen Correct nuclei in clusters Undefined Lost

C. elegans 839 2 0 7
(98·9) (0·02) (0) (0·08)

Human skin 343 16 1 2
(94·7) (4·4) (0·3) (0·6)

Benign breast tumour 492 29 3 1
(93·7) (5·5) (0·6) (0·2)

Xenografts 425 49 1 4
(88·7) (10·2) (0·2) (0·9)

Invasive carcinoma 260 75 56 4
(65·8) (19·0) (14·2) (1·0)
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levels. The cluster composed of two truncated spheres was
segmented, whatever the distance between the objects,
including the ‘no distance’ situation. This is due to the fact
that the binary mask of the clusters provided by the
thresholding algorithm always contained a ‘neck’ at the
interface of the objects, which the cluster division step could
detect. The other cluster required a minimum distance of up
to 1·6 mm. At closer distances, the binary mask of the
cluster generated was purely convex and only one nuclear
marker could be extracted. The table also shows the
influence of the increasing noise and the orientation of
the object interface in the cluster relative to the image.

Table 3 shows the accuracy of the surfaces at the
interface of touching objects in the cluster for the inter-
mediate noise level (SNR ¼ 3·5). Even though the accuracy
is not as high as in the case of isolated objects, it still
remains close to the resolution limit.

3.2. Results of the experiments with tissue specimens

The performance of the segmentation procedure based on
visual judgement for tissue specimens is shown in Table 4. It
shows, for each type of specimen, the number of correctly
segmented nuclei, the number of nuclei in cluster that could
not be divided, the number of nuclei that were lost due to
poor DNA staining (Lost), and the number of objects that
the user could not identify as either individual, clustered
nuclei or debris (Undefined).

Segmentation was considered highly accurate for the C.
elegans specimens (Correct nuclei ¼ 99%). This was believed
to be due to their high nuclear homogeneity in terms of
shape and relatively large separations between nuclei.

The segmentation accuracy for normal skin and benign
breast tissue was 94·7 and 93·7% correctly segmented
nuclei, respectively. Most clusters that could not be divided
touched at least one of the edges of the image, such that an
incomplete nucleus was present. These partial nuclei were
not sufficient to generate a nuclear marker in the cluster
division step. Other clusters were so compact that no

suitable peaks could be extracted. Figure 7 shows a stereo
pair image of segmented normal skin nuclei.

In the specimens of cancer cells grown in mice, 88·7% of
the nuclei were correctly segmented. In these specimens,
the number of nuclei remaining in clusters was higher, due
to higher compactness of the nuclei and to the existence of
unstained zones inside the nuclei, presumably nucleoli,
which generated incorrect nuclear markers in the cluster
segmentation algorithm. A hole-filling step was performed
after thresholding, but in some cases this step filled some
background areas between nuclei, making the segmenta-
tion of those clusters more difficult.

The proportion of correct nuclei dropped to 65·8% for
invasive carcinoma. This was caused by the high degree of
clustering and increased heterogeneity of the nuclear shape.
The images of these specimens showed many nuclear
regions where the individual nuclei could not be recognized
by visual examination. These were classified as undefined
objects.

4. Discussion

A new program for segmenting DNA-stained nuclei from 3D
confocal images has been developed and tested. In this
paper we have described the steps that comprise the
program, and we have presented the results of the
evaluation of the algorithm on computer-generated objects
and on five different types of tissue specimen that varied
dramatically in their complexity.

The program performs automatic segmentation, but
includes an interactive classification step, where the user
confirms, corrects and classifies the results of the segmenta-
tion. By taking this approach, user interaction was kept to a
minimum because of the user-friendly design of the
visualization program daVinci.

The choice of including an interactive classification step
into the otherwise completely automatic procedure is
justified on the dramatic heterogeneity of nuclear morphol-
ogy in cancer specimens, which makes it difficult to define a

Fig. 7. Stereo pair image of segmented normal skin nuclei.
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set of measurable features that could be used for reliable
automatic classification of DNA-labelled objects. The inclu-
sion of the classification step ensures that we obtain a
population of segmented objects that we are confident
represent individual cell nuclei.

We are assuming the recognition capability of the human
visual system as the gold standard. We are aware of the
high inter- and intra-observer variation reported from
histological specimens. This variation is generally for two
reasons: (1) different cells in the specimen are examined by
different observers, or by the same observer on different
occasions. Since our computer program displays each
individual object to the analyst, this reason does not apply.
(2) The histological stage depends on subtle differences, i.e.
changes in the size/shape of nuclei, identification of cell type
or if cells have invaded through the basal membrane. Our
visual classification is much simpler, asking the analyst to
say if a segmented object is a single nucleus, multiple nuclei
or debris. Thus, there is a much lower possibility for
variation, and in our hands inter- and intra-observer
variation is low. Furthermore, our software provides the
ability to check and correct earlier classification.

Our algorithm is highly accurate, as shown by the
experiments with computer-generated objects, since all the
surfaces were segmented with an average error below
the spatial resolution level. The results with tissue speci-
mens were obtained from analysis of 2548 nuclei, and show
that our algorithm correctly segmented a greater fraction of
nuclei than previously published methods (Rigaut et al.,
1991; Ancin et al., 1996; Irinopoulou et al., 1997).

The significant differences between this algorithm and the
previously published ones are: (1) thresholding used to
define regions of the image containing nuclei is adaptative,
and therefore varies across the image; (2) the filter size for
the morphological filtering is related to the size of the nuclei,
and is automatically estimated from the image using a
combination of a Hough-like transform of the original
image and an automatic focusing method; (3) objects were
classified visually by the operator, which ensured that the
result was a population of segmented objects where we were
confident that they all corresponded to individual nuclei.
We consider this to be a significant improvement over a fully
automatic method which would result in a population of
objects, most of which would correspond to individual
nuclei and the reminder would be errors (several nuclei or
debris).

In future work, we will refine the segmentation for highly
clustered nuclei. Our initial approach consists of using a
cluster segmentation method based on the Hough trans-
form. This algorithm combines edge information from the
original image with a priori shape information about the
nuclei, in a procedure to shrink and thereby separate
objects. Initial tests of this method (Lockett et al., 1997)
show that it identifies a greater proportion of individual

nuclei than our current method, but its utility is limited by
imprecise surface definition. To overcome this limitation, we
plan to apply denoising and shape recovering methods
based on anisotropic diffusion and level set curvature flow
(Malladi & Sethian, 1995), which have been shown to
provide significant improvement in a preliminary study
carried out by the authors (Sarti et al., 1998). A second
strategy, for highly clustered nuclei, will be to use
specific nuclear surface markers (e.g. a lamin antibody) to
explicitly delineate nuclear surfaces where contrast in the
DNA-stained images is very low. This antibody will be
labelled with a fluorochrome that is spectrally different
from the DNA stain, so that we obtain additional informa-
tion about the location of the interface between touching
nuclei.
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